月別アーカイブ: 2008年11月

ビアのあるマイクロストリップラインの特性解析 Part 2

 前回は、とりあえず中間にビアがあって、第1層から第4層へと変わるマイクロストリップラインの特性を、Genesysを使ってシミュレーションするための方法を示しました。
 実はこのやり方は、私が参加したアジレントテクノロジー様主催の
ジレントEEsof EDA フォーラム2008でお会いした、Genesys専任のアプリケーションエンジニアに教えていただいた方法です。フォーラム参加時、お互いに時間があったので、そのアプリケーションエンジニアの方に別室で手取り足取り教えていただきました。
 
 アジレントのUさん、本当にありがとうございました。
 
 これからの目標は、この形状をひな形にして、前回見られた共振点を無くし、リーズナブルな特性を持つマイクロストリップラインの形状を見つける事とします。
 まず考えるべきは、なぜこのような共振点が出来たかです。
 
 最も考えられるのは、ビアの部分が分布定数回路ではなく、集中定数回路部品、すなわちインダクタンス成分にみえている、ということでしょう。
 
 前回の図(図1として再掲)ビアの部分の金属(グランド)の抜きが多いように感じます。つまり、分布定数回路をミクロでみると、小さなインダクタンスが直列に接続され、そのインダクタンスとグランド間にキャパシタンスが並んでいるということになっているのですが、この構造が大きく崩れているのではないか、と考えました。
 
Close_look.jpg
 図1 最初のシミュレーションの形状 マイクロストリップラインとグランドの間隙は0.2mm
 そこで、伝送線路とグランド間のキャパシタンス成分を増やして、集中定数回路的にみえるようにするため、ビア部分のマイクロストリップラインとグランド間の距離を、0.2mmから、0.1mmにしてみました(図2)
 
narrow_gap.jpg
図2 マイクロストリップラインとグランドの間隔を0.1mmにした
 その時のSパラメータが図3です。
narrow_gap_S_parameter.jpg
図3 図2の形状時のSパラメーター
 
 やはり2.5GHz付近に共振点はあるものの、S21のデータが若干よくなり、S11は共振点における値はあまり変化はないものの、全体的に良い方向(値が小さくなっている)に向かっています。
 
 そこで、縦方向だけでなく、横方向のギャップも狭くしてみたらどうなるかシミュレーションすることにしました。
 0.65mmのギャップを0.15mmまで狭くしてみたのです。その時の形状が、図4です。
 
most_narrowest_gap.jpg
図4 ギャップを0.15mm x 0.1mmとした
 
 図4の形状でシミュレーションを行った結果が図5です。
 
most_narrowest_gap_S_para2
図5 共振点が高い周波数に移動したがあまり改善は無かった
 
 共振点は高いところに移動したものの、残念ながら良い結果は得られませんでした。その後、いろいろとギャップを変えてみたのですが、あまり良い結果が得られません。とにかく共振点が消えないのです。
 
 そこで、シミュレーションに使っているモデルを考え直すことにしました。特に、今回のモデルの場合は、計算時間を高速にするため、L1の下にあるのは、誘電体層とL2だけで、その下の誘電体層やL3は無いことになっています。L4層も同様です。
 ビアの部分は、全ての層を横断するわけですから、全ての金属層及び誘電体層の影響があるはずです。
 
 最終的にモデルを作り直すことにしました。
 
 Part1に戻るにはこちらをクリック        Part3へ進むにはこちらをクリック

ビアのあるマイクロストリップラインの特性解析 Part 1

 アジレントテクノロジー様(現:キーサイト・テクノロジー様)ご厚意により、パーソナル電磁界シミュレータ、Genesysを使わせていただいています。

 前々から気になっていた、ビアのあるマイクロストリップラインの特性解析を、Genesysを使って行ってみました。
 
 特に、前回のデバッグの時に苦労した経験から、電磁界シミュレータで確認してみたかったのです。Sパラメータがリーズナブルな値となる条件を割り出せれば、その条件で実際のマイクロストリップラインを作成し、特性を測定してシミュレータの結果とどの程度あうか確認してみたいと思います。
 
 今回はその一回目で、取り上げるのは、層板の第1層から第4層へビア経由でつながっているマイクロストリップラインです。
 
 層構成は以下の通り。
 
第1層:銅箔(t=40um)
誘電体:FR-4(Er=4.5、t=220um、tanδ= .0004)
第2層:銅箔(t=35um)
誘電体:FR-4(Er=4.5、t=930um、tanδ= .0004)
第3層:銅箔(t=35um)
誘電体:FR-4(Er=4.5、t=220um、tanδ= .0004)
第4層:銅箔(t=40um)
 
 マイクロストリップラインの全長は40mmとし、中間の20mmにビアを打って、マイクロストリップラインが、第1層から第4層へと層が変化します。
 シミュレーション用の図面(Layout)を以下の図1に示します。
First_Model.jpg
図1 解析するマイクロストリップラインの外観図
 
 さらに、ビアの部分を拡大したものが図2です。
Close_look.jpg
図2 図1のVIA部分の拡大図
 
 シミュレーション時間を短縮するため、第1層の下には誘電体とベタグランドの第2層しかなく、その下には、第3層、第4層はありません。同様に、第4層とベタグランドの第3層の上には第2層、第1層はありません。立体的に見ると図3のようになっています。
3d_current.jpg
図3 ビア部分の立体図(アジレントテクノロジー様ご提供)
 
 さて、このレイアウトで0GHzから5GHzまでSパラメータ(S11、S21)を計算してみました。その結果が図4です。
S_Parameters.jpg
図4 図1の形状でシミュレーションした結果
 
 特に考慮をしているわけではないので、2.5GHz付近に急峻な共振点があります。この特性のまま高速の立ち上がりを持つステップ信号を通すと、立ち上がり部に約2.5GHzの周期を持ったリンギングが発生します。これを無くすことが最終目標です。
 
 で、検討を重ねた結果、最も良かった形状のSパラメータが図5です。
Best_S_Parameters.jpg
 Part 2以降は、この図5の特性になるようにどのような事をしたか、を順次紹介します。
 
Part2はこちらをクリックしてください。

続きを読む

アジレントテクノロジー様のご厚意でGenesys応用例連載開始

 アジレントテクノロジー様キーサイトテクノロジー様のご厚意により、パーソナル電磁界シミュレータ、Genesysを使わせていただいてます。
 
 このソフトウエアを使って、ビアを持ったマイクロストリップラインの特性をどうやったら良くできるか、に関する特設記事を「事例紹介」のコーナーで連載を始めました。スタートは2008年11月1日です。
 
 既に、最も良いと思われる構造は見つけてありますが、この構造通りに実際にマイクロストリップラインを作り、特性を測定してその構造の優位性を確認する予定です。
 
 どうぞご期待ください。